10.5 Function of Continuous Random Variables: SISO

Reconsider the derived random variable $Y=g(X)$.

$$
x \rightarrow g(\cdot) \rightarrow Y=g(x)
$$

Recall that we can find $\mathbb{E} Y$ easily by (22):

$$
\mathbb{E} Y=\mathbb{E}[g(X)]=\int_{\mathbb{R}} g(x) f_{X}(x) d x . \quad \begin{aligned}
& \mathbb{E}[\gamma]=\mathbb{E}\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{x}(a) d x
\end{aligned}
$$

However, there are cases when we have to evaluate probäbility directly involving the random variable Y or find $f_{Y}(y)$ directly.

Recall that for discrete random variables, it is easy to find $p_{Y}(y)$ by adding all $p_{X}(x)$ over all x such that $g(x)=y$:

$$
\left.\begin{array}{l}
\text { Before doing this, } \tag{23}\\
\text { check that }
\end{array}\right\} \quad p_{Y}(y)=\sum_{x: g(x)=y} p_{X}(x) .
$$

Y is cont.
by checking
that the solutions for $y=g(a)$
is always (at most) countable at every y value.

For continuous random variables, it turns out that we can' ${ }^{[47}$ simply integrate or add the pdf of X to get the pdf of Y.
10.76. For $Y=g(X)$, if you want to find $f_{Y}(y)$, the following
two-step procedure will always work and is easy to remember:
(a) Find the pdf $F_{Y}(y)=P[Y \leq y] .=p[g(x) \leqslant y]$
$\left\{\begin{array}{l}\text { (b) Compute the pdf from the cdf by "finding the derivative" } f^{-\lambda x} \quad x>0,\end{array}\right.$
Example 10.77. Suppose $X \sim \mathcal{E}(\lambda) . \operatorname{Let} Y=5 X$. Find $f_{Y}(y)$.
otherwise
$F_{Y}(y)=p[Y \leqslant y]=p[5 x \leqslant y]=p\left[x \leqslant \frac{y}{5}\right]=F_{X}\left(\frac{y}{5}\right)$
by deft. of

${ }^{47}$ When you applied Equation $\sqrt{23}$ to continuous random variables, what you would get is $0=0$, which is true but not interesting nor useful.
Method 2 2

$$
\begin{aligned}
& Y=5 x \Rightarrow a=5, b=0 \\
& f_{Y}(y)=\frac{1}{|a|} f_{x}\left(\frac{y-b}{a}\right)=\frac{1}{5} f_{x}\left(\frac{y}{5}\right)
\end{aligned}
$$

(Affine)

10.78. Linear Transformation: Suppose $Y=a X+b$. Then, the pdf of Y is given by
step (1)

$$
\begin{aligned}
& F_{Y}(y)=P[Y \leq y]=P[a X+b \leq y]= \begin{cases}P\left[X \leq \frac{y-b}{a}\right], & a>0 \\
P\left[X \geq \frac{y-b}{a}\right], & a<0\end{cases} \\
& \text { Now, by definition, we know that } \\
& \qquad P\left[X \leq \frac{y-b}{a}\right]=F_{X}\left(\frac{y-b}{a}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
P\left[X \geq \frac{y-b}{a}\right] & =P\left[X>\frac{y-b}{a}\right]+P\left[X=\frac{y-b}{a}\right] \\
& =1-F_{X}\left(\frac{y-b}{a}\right)+P\left[X=\frac{y-b}{a}\right]
\end{aligned}
$$

For continuous random variable, $\bar{P}\left[X=\frac{y-b}{a}\right]=0$. Hence,

$$
F_{Y}(y)= \begin{cases}F_{X}\left(\frac{y-b}{a}\right), & a>0 \\ 1-F_{X}\left(\frac{y-b}{a}\right), & a<0\end{cases}
$$

Step 2 : Finally, fundamental theorem of calculus and chain rule gives

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)= \begin{cases}\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right), & a>0 \\ -\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right), & a<0\end{cases}
$$

Note that we can further simplify the final formula by using the
$|\cdot|$ function:

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right), \quad a \neq 0 . \quad \begin{align*}
& y=a x+b \tag{24}\\
& x=y \frac{y-b}{a}
\end{align*}
$$

Graphically, to get the plots of f_{Y}, we compress f_{X} horizontally by a factor of a, scale it vertically by a factor of $1 /|a|$, and shift it to the right by b.

Of course, if $a=$ then we get the uninteresting degenerated random variable $Y \equiv b$. $Y=a \times+b$ where $a=0, \times$ i. cont.

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}}
$$

10.79. Suppose $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$ and $Y=a X+b$ for some constants a and b. Then, we can use (24) to show that $Y \sim \mathcal{N}\left(a m+b, a^{2} \sigma^{2}\right)$.

Special caves: (10.57$]$ p. 144)
(a) $z \sim \mathcal{N}(0,1) \Rightarrow x=\sigma z+m \sim \mathcal{N}\left(m, \sigma^{2}\right)$

$$
a=\sigma \quad b=m
$$

$$
a=1 / \sigma, b=-m / \sigma
$$

(b) $x \sim N\left(m, \sigma^{2}\right) \Rightarrow z=\frac{x-m}{\sigma} \sim \mathcal{N}(0,1)$

Remark: The
Example 10.80. Amplitude modulation in certain communica- "square" fund. tion systems can be accomplished using various nonlinear devices is a very such as a semiconductor diode. Suppose we model the nonlinear in portent func. device by the function $Y=X^{2}$. If the input X is a continuous in EC. For random variable, find the density of the output $Y=X^{2}$. example, you need it (1) $F_{Y}(y) \equiv P[Y \leqslant y]=P\left[x^{2} \leqslant y\right]$
(1.1) First note that $Y=x^{2} \geq 0$. Therefore, for $y<0, F_{Y}(y)=0 . \quad E x . F_{Y}(-3)=P[Y \leqslant-3]$ $=p\left[x^{2} \leqslant-3\right]$
(when you are utaking on this type of question, always try
to bring out this ear case first.)
(1.2) For any $y>0$. $F_{y}(y)=P\left[x^{2} \leqslant y\right] \underset{\text { xis a }}{\text { cont. RV }}$ Ex. $P\left[x^{2} \leqslant 4\right]=$

$$
P[-2 \leqslant x \leqslant 2]
$$

(1.3) For $y=0, F_{Y}(0)=P\left[x^{2} \leq 0\right]=P[x=0] \stackrel{ }{=0}$

$$
\begin{aligned}
& F_{y}(y)=\left\{\begin{array}{lll}
F_{x}(\sqrt{y})-F_{x}(-\sqrt{y}), & y>0, & \text { step (2) } \\
0, & y \leqslant 0 . & \frac{d}{d y}
\end{array} f_{Y}(y)= \begin{cases}\frac{f_{x}(\sqrt{y})}{2 \sqrt{y}}+\frac{f_{x}(-\sqrt{y})}{2 \sqrt{y}}, y> \\
0, & y \leqslant 0\end{cases} \right. \\
& \begin{array}{l}
\text { add the care when } \\
y=0 .
\end{array} \\
& \text { (This is ok if we know } Y \\
& \text { is a cont. RV) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
Y=a X+b \Rightarrow f_{Y}(y) & =\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right) \\
& \left.=\frac{1}{\sqrt{2 \pi} \sigma|a|} e^{-\frac{1}{2}\left(\frac{y-b}{a}-m\right.} \frac{\sigma}{\sigma}\right)^{2} \\
& =\frac{1}{\sqrt{2 \pi} \sigma|a|} e^{-\frac{1}{2}\left(\frac{y-(a m+b)}{|a| \sigma}\right)^{2}}
\end{aligned} \\
& Y \sim \mathcal{N}\left(a m+b, \sigma^{2} a^{2}\right) \quad \sigma_{Y}=\sigma|a| \\
& \text { From earlier section (r), } \\
& x \sim N\left(m, \sigma^{2}\right) \\
& \mathbb{E} X=m, \operatorname{Va} X=\sigma^{2} \text {. } \\
& \mathbb{E} Y=a \mathbb{E} X+b=a a^{n}+b \\
& \left.\operatorname{var} Y=a^{2} \operatorname{Var} X=a^{2} \sigma^{2}\right\} \\
& \sigma_{Y}=|a| \sigma
\end{aligned}
$$

To check that a $R V Y$ is a cont. $R V$, there are two important techniques:
(1) Check that the $c d f F_{Y}(y)$ is a continuous function (for all y.) (no jump)
(2) Check that $P[Y=y]=0$ (for any y).

Ex. Consider $Y=x^{2}$ when x is a continuous $R V$

$$
P[Y=y]=P\left[x^{2}=y\right]=\left\{\begin{array}{ll}
p[x=0], 2=0 \\
p[x=\sqrt{y}]+p[x=-\sqrt{y}] & y=0 \\
0 & 0+0
\end{array},\right.
$$

There is no x that satisfies $x^{2}=$ negative number.

Became $P[Y=y]=0$ for all y, we conclude that Y is a cont.
Ex. consider $Y=g(X)$ when X is a cont. $R V$
Is Y a continuous RV? and
Yes.
(The number of solutions
 for the eq. $y=g(a)$ is finite.)
Ex. $Y=\cos (X)$ when x is a cont. $R V$
Is Y a continuous RV?

Yes

(The number of solutions for the eq. $y=\cos (a)$ is countable

$$
\begin{aligned}
P[Y=0] & =P[\cos (x)=0]=P\left[x=\frac{\pi}{2}+k \pi, k=0, \pm 1, \pm 2, \ldots\right] \\
& =\sum_{k=-\infty}^{\infty} \overparen{P\left[x=\frac{\pi}{2}+k \pi\right]=0}
\end{aligned}
$$

For each y value, the collection of x values that satisfy $y=g(a)$ is at most countable. In particular,
Don't have to
$\Rightarrow Y$ is a cunt. RV. One $\rightarrow \frac{\text { two }}{\text { if }}$ solutions when $y>0$

step (1) $F_{Y}(y) \equiv P[Y \leqslant y]=P\left[\frac{1}{x^{2}} \leqslant y\right]$
(1.1) Note that $\frac{1}{x^{2}}>0 \Rightarrow F_{y}(y)=0$ fur $y \leqslant 0$
(1.2) For $y>0$,

$$
F_{Y}(y)=P\left[\frac{1}{x^{2}} \leqslant y\right]=P\left[x^{2} \geqslant \frac{1}{y}\right]=P\left[x>\frac{1}{\sqrt{y}}\right]
$$

$$
=1-P\left[x \leq \frac{1}{\sqrt{y}}\right]=1-F_{x}\left(\frac{1}{\sqrt{y}}\right)+P\left[x<-\frac{1}{\sqrt{y}}\right]
$$

Exercise 10.82 (F2011). Suppose X is uniformly distributed on the interval $(1,2) .(X \sim \mathcal{U}(1,2)$.$) Let Y \underset{s+e_{p}}{=\frac{1}{X^{2}} .}$.2
(a) Find $f_{Y}(y)$.
(b) Find $\mathbb{E} Y$.

$$
\begin{aligned}
& f_{Y}(y)= \begin{cases}+f_{x}\left(\frac{1}{\sqrt{y}}\right)\left(+\frac{1}{2} y^{-\frac{3}{2}}\right), & y>0, \\
0, \lambda & \frac{d}{d y} \frac{1}{\sqrt{X_{e p}^{2}}}=\frac{d}{d y} y^{-\frac{1}{2}}=-\frac{1}{2} y^{-} \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Exercise 10.83 (F2011). Consider the function

$$
\begin{aligned}
& \text { 011). Consider the function } \\
& g(x)=\left\{\begin{array}{ll}
x, & x \geq 0 \\
-x, & x<0
\end{array}= \begin{cases}\lambda e^{-\frac{\lambda}{\sqrt{y}}} \times \frac{1}{2} y^{-\frac{3}{2}}, & y>0 \\
0, & \text { otherwise. }\end{cases} \right.
\end{aligned}
$$

Suppose $Y=g(X)$, where $X \sim \mathcal{U}(-2,2)$.
Remark: The function g operates like a full-wave rectifier in that if a positive input voltage X is applied, the output is $Y=X$, while if a negative input voltage X is applied, the output is $Y=$ $-X$.
(a) Find $\mathbb{E} Y$.
(b) Plot the cdf of Y.
(c) Find the pdf of Y

$\equiv F_{x}(a)$ is a continuous function

$P[X \in B]=$
$P[X=x]=$
Interval prob.

$$
f_{Y}(y)=\frac{d}{d y} P[g(X) \leq y]
$$

Alternatively,

$$
f_{Y}(y)=\sum_{k} \frac{f_{X}\left(x_{k}\right)}{\left|g^{\prime}\left(x_{k}\right)\right|},
$$

x_{k} are the real-valued roots of the equation $y=g(x)$.

For $Y=g(X)$,	of the equation $y=g(x)$.	
$P[Y \in B]=$	$\sum_{x: g(x) \in B} p_{X}(x)$	$\int_{\{x: g(x) \in B\}} f_{X}(x) d x$
$\mathbb{E}[g(X)]=$	$\sum_{x} g(x) p_{X}(x)$	$\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x$
$\mathbb{E}\left[X^{2}\right]=$	$\sum_{x} x^{2} p_{X}(x)$	$\int_{-\infty}^{+\infty} x^{2} f_{X}(x) d x$
$\operatorname{Var} X=$	$\sum_{x}(x-\mathbb{E} X)^{2} p_{X}(x)$	$\int_{-\infty}^{+\infty}(x-\mathbb{E} X)^{2} f_{X}(x) d x$

Table 7: Important Formulas for Discrete and Continuous Random Variables

